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INTRODUCTION 

PROBLEMS of flow and heat transfer in enclosures with one 
or more rotating walls and with coolant throughflow are 
encountered in gas turbines~and other rotating devices. Such 
enclosures and cavities are situated adjacent to the rotating 
shaft and are found in a variety of sizes and shapes, Owing 
to the broad range of possible geometries and operating 
conditions, it is impractical to consider performing exper- 
iments for even a modest fraction of all the configurations 
of interest. It is, therefore, appropriate to seek analytical 
predictions for the fluid flow and heat-transfer charac- 
teristics. 

To reflect reality, an analytical model for the flow in the 
aforementioned enclosures should take account of both 
turbulence and recirculation. From an examination of the 
relevant literature, it appears that the only published 
analyses are limited either to laminar flow or to boundary 
layer type turbulent flow (i.e. without recirculation), as 
exemplified by [ 1,2]. 

In considering a next step forward, it appeared logical to 
the present authors to examine what can be done with the 
rotating cavity-fluid throughflow problem by employing a 
relatively simple turbulence model. More sophisticated 
models have been formulated [3] involving additional con- 
servation equations for predicting the turbulent transport 
characteristics, subject to input values of experimentally 
determined parameters. It is felt. however, that application 
of these models to the present class ofproblems is a later step. 

The present analysis is formulated to permit recirculation, 
and the turbulence model takes account of differences in the 
transport processes near the walls and in the core. An outline 
of the analytical formulation will be given here along with 
representative results. Comparisons are made with available 
experimental data [4] in order to help assess the efficacy of 
the approach. The details of the work are given in [5]. 

A schematic diagram of the problem to be analyzed is 
presented in Fig. 1, which shows a cylindrical cavity with a 
coolant fluid entering and leaving through central apertures 
in the respective disks that bound the enclosure. The enter- 
ing flow is turbulent. The left-hand disk is rotating, as is the 
attached inlet pipe, whereas the other walls are stationary. 
The thermal boundary conditions are stated in the diagram, 
along with dimensional nomenclature. This problem was 
selected for analysis in order to match the experimental 
set-up of [4]. 

OUTLINE OF THE ANALYSIS AND SOLUTION 

The starting point of the analysis was the four conser- 
vation equations for r, Cp and z momentum and continuity, 
in which the three velocity components and the pressure 
appear as unknowns. The flow field was assumed to be 
axisymmetric, and this facilitated the elimination of the 
pressure in terms of the vorticity w. Further manipulation 
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produced a set of three coupled partial differential equations 
for o/r, the stream function tJ, and reg. 

The flow field was subdivided into two regions: a wall 
region and a core. The aforementioned governing differential 
equations were employed both in the core and on the 
boundary between the wall and core regions. For the core, 
the shear stress terms were evaluated using a uniform, 
isotropic eddy diffusivity characterized by E/V. 

For the wall region, the so-called wall function [6] was 
employed. It was obtained from numerical integration of a 
simplified momentum equation which balances the shear. 
pressure, and centrifugal forces. The turbulence model used 
for the wall region is the Prandtl mixing length modified 
by the Van Driest damping factor. The wall function is an 
algebraic fit of the numerical solution of the simplified 
momentum equation, and it inter-relates velocity, distance 
from the wall, and wall shear. This relationship contains 
the pressure and centrifugal forces as input paremeters. The 
wall function expression given in [6] was adapted to take 
account of these input parameters as they occur in the 
present problem. 

The matching of the wall and core regions was performed 
in such a way that all the conservation laws were satisfied. 
For the flow field adjacent to the disks, the boundary 
between the regions was at z = constant, whereas adjacent 
to the shroud the matching was at r = constant. 

Owing to the assumption of constant thermophysical 
properties, the flow field is independent of the temperature 
field. Therefore, the energy equation can be solved after the 
solution for thevelocityfield has been obtained. The molecu- 
lar and turbulent Prandtl numbers, which appear as par- 
ameters in the energy equation, were both assigned values 
of unity. The reason for using a molecular Prandtl number 
of unity rather than 0.7 was that it enabled certain velocity- 
field wall function results to be employed in solving the 
energy equation for the wall region. 

A finite difference scheme was employed for the solutions, 
based on the contrived transient&explicit method described 
in [7]. For this purpose, the enclosure was subdivided by a 
grid containing 13 x 15 elements (axial x radial). 

The positioning of the boundary between the core and 
wall regions was checked after each solution. With the aid 
of the wall functions, the dimensionless eddy diffusivity tijr 
was evaluated at each grid point on the boundary line. A 
comparison of the average of these values with that for the 
core flow was used as a criterion as to whether the boundary 
line had to be shifted and the calculation repeated. 

RESULTS AND CONCLUSIONS 

Local Nusselt number results for three cases vvhich permit 
comparison with experiment are shown in Fig. 2. For each 
case, the results for the rotating disk and the stationary 
shroud are respectively given in the left- and right-hand 
graphs. The dimensionless parameters are defined as: 
Nu = hr,/k, Rei = 1’,,(2r,)/v, Re, = riC@. The local heat- 
transfer coefficient h is the quotient of the local heat flux 
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FIG. 1. Schematic diagram of the enclosure. 
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FIG. 2. Local Nusselt number results. 

divided by the temperature difference between the local wall 
position and the entering fluid, cZi is the average velocity 
of the entering flow, and Q is the angular velocity of the 
disk. The E/V values of 25, 50 and 100 were chosen on the 
basis of the rotating annulus experiments of Kuzay [S]. 

The comparison between analysis and experiment is 
generally favorable, especially since the largest average 
deviations of 20-25 per cent can be attributed, at least in 
part, to the uncertainties of the experimental data. On the 
other hand, there are a number of indications that a model 
which assumes a uniform, isotropic turbulent diffusivity in 
the core is not fully adequate. In particular, the spatial 
variations of the analytical and experimental results are, in 
some cases, not consonant. In fact, aside from the range of 
smaller radial positions on the rotating disk, the analytical 
results are essentially independent of position on the re- 
spective disk and shroud surfaces. Furthermore, the relation- 
ship between the analytical and experimental results is 
different on the disk and on the shroud. 

On the basis of the foregoing, it appears that the model 
used here should be adequate for preliminary design calcu- 
lations but that a more refined model might well be 
considered for a detailed final design. 

A sequence of graphs will now be presented to provide 
insight into the flow field. These results correspond to the 
Re, and Re, of the uppermost case of Fig. 2, with E/V = 50. 
Figure 3 shows the streamlines in the r, z plane. The stream 

FIG. 3. Streamlines in r, z plane. Rr,, = 170 000, Rei = 25 000, 
E/1’ = 50. 
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FIG. 4. Profiles of the v,~, rr and r, velocity components, 
Re<l = 170 000, Re, = 25 000, E/I’ = 50. 

function appearing on the curves is nondimensionahzed by 
rg&. It is especially noteworthy that the coolant. which 
enters from the left, is not dispersed, but rather retains its 
identity and is confined to a stream tube as it passes through 
the enclosure. It is possible to identify five radial bands 
characterized by specific flow patterns, First, there is the 
stream tube of the coolant flow; next, a counter-clockwise 
vortex zone; beyond that, an axial backflow region; then, 
a clockwise vortex zone; and, finally, an axial forward flow 
region near the wall. In view of the complexity of such a 
flow field, unsteadiness is expected to exist in practice. 

Figure 4 is an array of three graphs which respectively 
portray profiles of uh, vI and 0,. The profiles at various axial 
stations are plotted as a function of the radial coordinate. 
The scale of the dimensionless velocity variable is shown in 
each graph. 

The c’+ profiles, all of which correspond to axial stations 
outside the boundary layers on the disks, are very nearly 
identical all across the enclosure. The profiles of the axial 
velocity v, reveal the presence of three regions distributed 
across the radius of the cavity. The inner region is charac- 
terized by a forward flow through the central stream tube, 
the middle region contains a backflow, whereas the outer 
region corresponds to a forward flow along the shroud. The 
radial velocities are generally small except near the rotating 
and stationary disks. 

A fuller presentation of results is available in [5]. 
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